Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Curr Med Imaging ; 17(11): 1324-1329, 2021.
Article in English | MEDLINE | ID: covidwho-1574892

ABSTRACT

BACKGROUND AND AIMS: Coronavirus Disease 2019 (COVID-19) pandemic has become a global health issue. This study aimed to explore the clinical characteristics and CT imaging features of patients with COVID-19 on admission. METHODS: Consecutive patients with laboratory-confirmed COVID-19 were retrospectively recruited to this study from January 2020 to March 2020. According to the disease severity status on admission, patients were divided into two groups, the common group, and the severe group. RESULTS: Forty-four patients (F/M 20/24) who were COVID-19 positive were enrolled in this study. The most common onset symptom was fever (90.9%), followed by cough (43.2%). As for the laboratory tests, common findings included increased C reactive protein (47.7%) and erythrocyte sedimentation rate (43.2%) and decreased lymphocyte (34.1%). The frequency of decreased lymphocyte count and increased lactate dehydrogenasewas higher in the severe group (n=14) than in the common group (n=30). About 86% of patients showed typical imaging findings of COVID-19 infection, including ground-glass opacity with ill-defined margins, air bronchogram, interlobular septal thickening, and consolidation. Lesions were mainly located in the peripheral and subpleural regions with diffused distribution and multiple lung lobes were found to be affected. CONCLUSION: Fever and cough were the most common onset symptoms of COVID-19. Increased C reactive protein and erythrocyte sedimentation rate were the most common laboratory findings. Typical signs of chest CT imaging of COVID-19 included ground-glass opacity with ill-defined margins, air bronchogram, interlobular septal thickening, and consolidation.


Subject(s)
COVID-19 , Humans , Retrospective Studies , SARS-CoV-2
2.
Biosens Bioelectron ; 199: 113865, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1560782

ABSTRACT

Rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for early diagnostics and timely medical treatment of coronavirus disease 2019 (COVID-19). However, current detection methods typically rely on expensive and bulky instrumentation. Here, we developed a simple, sensitive, instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using a self-contained microfluidic system. The microfluidic chip integrates isothermal amplification, CRISPR cleavage, and lateral flow detection in a single, closed microfluidic platform, enabling contamination-free, visual detection. To simplify the operation and transportation of the device, we lyophilized the CRISPR reagents in the reaction chamber and pre-stored the liquid solutions in blisters. We employed a low-cost, portable hand warmer to incubate the microfluidic chip without the need for electricity. The self-contained microfluidic system can detect down to 100 copies of SARS-CoV-2 RNA. Further, we clinically validated our method by detecting 24 COVID-19 clinical nasopharyngeal swab samples, achieving excellent sensitivity (94.1%), specificity (100%), and accuracy (95.8%). This simple, sensitive, and affordable microfluidic system represents a promising tool for point-of-care diagnostics of COVID-19 and other infectious diseases.


Subject(s)
Biosensing Techniques , COVID-19 , CRISPR-Cas Systems , Humans , Microfluidics , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
3.
Adv Nanobiomed Res ; 2(2): 2100101, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1557774

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths worldwide. However, most SARS-CoV-2 detection methods depend on time-consuming sample preparation and large detection instruments. Herein, a method employing nonbleeding pH paper to achieve both RNA extraction and visual isothermal amplification is proposed, enabling rapid, instrument-free SARS-CoV-2 detection. By taking advantage of capillary forces, pH-paper-based RNA extraction can be accomplished within 1 min without need for any equipment. Further, the pH paper can mediate dye-free visual isothermal amplification detection. In less than a 46-min sample-to-answer time, pH-paper-based extraction and visual detection (termed pH-EVD) can consistently detect 1200 genome equivalents per microliter of SARS-CoV-2 in saliva, which is comparable to TaqMan probe-based quantitative reverse transcription PCR (RT-qPCR). Through coupling with a chemically heated incubator called a smart cup, the instrument-free, pH-EVD-based SARS-CoV-2 detection method on 30 nasopharyngeal swab samples and 33 contrived saliva samples is clinically validated. Thus, the pH-EVD method provides simple, rapid, reliable, low-cost, and instrument-free SARS-CoV-2 detection and has the potential to streamline onsite COVID-19 diagnostics.

4.
Eur J Oper Res ; 304(1): 150-168, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-1531207

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has seriously affected the whole world, and epidemic research has attracted increasing amounts of scholarly attention. Critical facilities such as warehouses to store emergency supplies and testing or vaccination sites could help to control the spread of COVID-19. This paper focuses on how to locate the testing facilities to satisfy the varying demand, i.e., test kits, caused by pandemics. We propose a two-phase optimization framework to locate facilities and adjust capacity during large-scale emergencies. During the first phase, the initial prepositioning strategies are determined to meet predetermined fill-rate requirements using the sample average approximation formulation. We develop an online convex optimization-based Lagrangian relaxation approach to solve the problem. Specifically, to overcome the difficulty that all scenarios should be addressed simultaneously in each iteration, we adopt an online gradient descent algorithm, in which a near-optimal approximation for a given Lagrangian dual multiplier is constructed. During the second phase, the capacity to deal with varying demand is adjusted dynamically. To overcome the inaccuracy of long-term prediction, we design a dynamic allocation policy and adaptive dynamic allocation policy to adjust the policy to meet the varying demand with only one day's prediction. A comprehensive case study with the threat of COVID-19 is conducted. Numerical results have verified that the proposed two-phase framework is effective in meeting the varying demand caused by pandemics. Specifically, our adaptive policy can achieve a solution with only a 3.3% gap from the optimal solution with perfect information.

5.
Sens Actuators B Chem ; 351: 130998, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1492625

ABSTRACT

Multiplexed detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rather than detection targeting a single gene is crucial to ensure more accurate coronavirus disease 2019 (COVID-19) diagnostics. Here, we develop a monolithic, 3D-printed, lab-on-disc platform for multiplexed molecular detection of SARS-CoV-2. The centrifugal lab-on-disc is fabricated in one step using simple 3D printing technology, circumventing the need for aligning and binding multiple layers. By combining isothermal amplification technology, this lab-on-disc platform is capable of simultaneously detecting the nucleoprotein and envelope genes of SARS-CoV-2 as well as an internal control of the human POP7 gene. Within a 50-minute incubation period, 100 copies SARS-CoV-2 RNA can be detected through visual observation according to color and fluorescence changes in the disc. Further, we clinically validated the lab-on-disc platform by testing 20 nasopharyngeal swab samples and demonstrated a sensitivity of 100% and an accuracy of 95%. Therefore, the monolithic, 3D-printed, lab-on-disc platform provides simple, rapid, disposable, sensitive, reliable, and multiplexed molecular detection of SARS-CoV-2, holding promise for COVID-19 diagnostics at the point of care.

6.
Lab Chip ; 21(14): 2730-2737, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1260960

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has become a public health emergency and widely spread around the world. Rapid, accurate and early diagnosis of COVID-19 infection plays a crucial role in breaking this pandemic. However, the detection accuracy is limited for current single-gene diagnosis of SARS-CoV-2. Herein, we develop an autonomous lab-on-paper platform for multiplex gene diagnosis of SARS-CoV-2 by combining reverse transcription recombinase polymerase amplification (RT-RPA) and CRISPR-Cas12a detection. The autonomous lab-on-paper is capable of simultaneously detecting nucleoprotein (N) gene and spike (S) gene of SARS-CoV-2 virus as well as human housekeeping RNAse P gene (an internal control) in a single clinical sample. With the developed platform, 102 copies viral RNA per test can be detected within one hour. Also, the lab-on-paper platform has been used to detect 21 swab clinical samples and obtains a comparable performance to the conventional RT-PCR method. Thus, the developed lab-on-paper platform holds great potential for rapid, sensitive, reliable, multiple molecular diagnostics of COVID-19 and other infectious diseases in resource-limited settings.


Subject(s)
COVID-19 , Pandemics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
7.
Sens Actuators B Chem ; 344: 130242, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1260865

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic has become a global public health emergency. The detection of SARS-CoV-2 and human enteric pathogens in wastewater can provide an early warning of disease outbreak. Herein, a sensitive, multiplexed, colorimetric detection (termed "SMCD") method was established for pathogen detection in wastewater samples. The SMCD method integrated on-chip nucleic acid extraction, two-stage isothermal amplification, and colorimetric detection on a 3D printed microfluidic chip. The colorimetric signal during nucleic acid amplification was recorded in real-time and analyzed by a programmed smartphone without the need for complicated equipment. By combining two-stage isothermal amplification assay into the integrated microfluidic platform, we detected SARS-CoV-2 and human enteric pathogens with sensitivities of 100 genome equivalent (GE)/mL and 500 colony-forming units (CFU)/mL, respectively, in wastewater within one hour. Additionally, we realized smart, connected, on-site detection with a reporting framework embedded in a portable detection platform, which exhibited potential for rapid spatiotemporal epidemiologic data collection regarding the environmental dynamics, transmission, and persistence of infectious diseases.

8.
Front Cell Infect Microbiol ; 11: 663949, 2021.
Article in English | MEDLINE | ID: covidwho-1231323

ABSTRACT

As the COVID-19 pandemic continues, people are becoming infected at an alarming rate, individuals are unknowingly spreading disease, and more lives are lost every day. There is an immediate need for a simple, rapid, early and sensitive point-of-care testing for COVID-19 disease. However, current testing approaches do not meet such need. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods have received substantial attention for nucleic acid-based molecular testing due to their simplicity, high sensitivity and specificity. This review explores the various CRISPR-based COVID-19 detection methods and related diagnostic devices. As with any emerging technology, CRISPR/Cas-based nucleic acid testing methods have several challenges that must be overcome for practical applications in clinics and hospitals. More importantly, these detection methods are not limited to COVID-19 but can be applied to detect any type of pathogen, virus, and fungi that may threaten humans, agriculture, and food industries in resource-limited settings. CRISPR/Cas-based detection methods have the potential to become simpler, more reliable, more affordable, and faster in the near future, which is highly important for achieving point-of-care diagnostics.


Subject(s)
COVID-19 , Clustered Regularly Interspaced Short Palindromic Repeats , COVID-19 Testing , CRISPR-Cas Systems , Humans , Pandemics , Point-of-Care Testing , SARS-CoV-2
9.
Biosens Bioelectron ; 184: 113218, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1188340

ABSTRACT

Quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is crucial for early diagnosis and timely medical treatment of coronavirus disease 2019. Here, we describe a digital warm-start CRISPR (dWS-CRISPR) assay for sensitive quantitative detection of SARS-CoV-2 in clinical samples. The dWS-CRISPR assay is initiated at above 50 °C and overcomes undesired premature target amplification at room temperature, enabling accurate and reliable digital quantification of SARS-CoV-2. By targeting SARS-CoV-2's nucleoprotein gene, the dWS-CRISPR assay is able to detect down to 5 copies/µl SARS-CoV-2 RNA in the chip. It is clinically validated by quantitatively determining 32 clinical swab samples and three clinical saliva samples. Moreover, it has been demonstrated to directly detect SARS-CoV-2 in heat-treated saliva samples without RNA extraction. Thus, the dWS-CRISPR method, as a sensitive and reliable CRISPR assay, facilitates accurate SARS-CoV-2 detection toward digitized quantification.


Subject(s)
Biosensing Techniques , COVID-19 , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2
10.
Nat Commun ; 11(1): 4711, 2020 09 18.
Article in English | MEDLINE | ID: covidwho-780001

ABSTRACT

The recent outbreak of novel coronavirus (SARS-CoV-2) causing COVID-19 disease spreads rapidly in the world. Rapid and early detection of SARS-CoV-2 facilitates early intervention and prevents the disease spread. Here, we present an All-In-One Dual CRISPR-Cas12a (AIOD-CRISPR) assay for one-pot, ultrasensitive, and visual SARS-CoV-2 detection. By targeting SARS-CoV-2's nucleoprotein gene, two CRISPR RNAs without protospacer adjacent motif (PAM) site limitation are introduced to develop the AIOD-CRISPR assay and detect the nucleic acids with a sensitivity of few copies. We validate the assay by using COVID-19 clinical swab samples and obtain consistent results with RT-PCR assay. Furthermore, a low-cost hand warmer (~$0.3) is used as an incubator of the AIOD-CRISPR assay to detect clinical samples within 20 min, enabling an instrument-free, visual SARS-CoV-2 detection at the point of care. Thus, our method has the significant potential to provide a rapid, sensitive, one-pot point-of-care assay for SARS-CoV-2.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Pneumonia, Viral/virology , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Genes, Viral , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , Pneumonia, Viral/diagnosis , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity , Viral Proteins/analysis , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL